C(α) preserving operators on separable Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

Lfc Bumps on Separable Banach Spaces

In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.

متن کامل

Compact operators on Banach spaces

In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...

متن کامل

multiplication operators on banach modules over spectrally separable algebras

‎let $pa$ be a commutative banach algebra and $ex$ be a left banach $pa$-module‎. ‎we study the set‎ ‎$dec_{pa}(ex)$ of all elements in $pa$ which induce a decomposable multiplication operator on $ex$‎. ‎in the case $ex=pa$‎, ‎$dec_{pa}(pa)$ is the well-known apostol algebra of $pa$‎. ‎we show that $dec_{pa}(ex)$ is intimately related with the largest spectrally separable subalgebra of $pa$ and...

متن کامل

Matrix multiplication operators on Banach function spaces

Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1982

ISSN: 0022-1236

DOI: 10.1016/0022-1236(82)90015-5